Code: EC3T5

II B. Tech - 1 Semester - Regular Examinations - January 2014

ELECTRICAL TECHNOLOGY (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours

Marks: 5x14=70

Answer any FIVE questions. All questions carry equal marks

- 1. a) Explain the construction details of D.C generators with neat sketches.

 7 M
 - b) A shunt generator supplies 75 A at 200 V through feeders of resistance $0.08~\Omega$. The armature and shunt field windings have resistance of $0.04~\Omega$ and $80~\Omega$ respectively. Find terminal voltage and generated E.M.F. 7 M
- 2. a) What is the necessity of starter in D.C. Motor? Describe the principle of operation 3-point starter with neat sketch. 7 M
 - b) A 10 KW ,250V ,D.C shunt Motor with an armature resistance of 0.8 Ω and field resistance of 275 Ω takes 3.91A, when running light at rated voltage and rated speed.
 - i) What conclusions can you draw from the above data regarding machine losses?
 - ii) Calculate the machine efficiency as a generator when delivering an output of 10kw at rated voltage and speed and as a Motor drawing an input of 10kw. neglect stray losses.
 7 M

3. a) What is a transform	er? Explain its	principle of	operation.
---------------------------	-----------------	--------------	------------

7 M

- b) Draw and explain the phasor diagram of practical transformer with resistance and leakage reactance under
 - i) lagging load
 - ii) leading load

7 M

- 4. a) In a 25 kVA, 2000/200 V transformer, the iron and copper losses are 300 and 400W respectively.
 - i) Calculate the efficiency on unity power-factor at full load and half full load.
 - ii) Determine the load for maximum efficiency and iron and copper losses in this case.

 7 M
 - b) Write a short notes on short circuit test on transformer 7 M
- 5. a) Explain the principle of operation of 3-phase induction motor with flux and MMF waves.

 7 M
 - b) Derive the conditions for maximum starting and running torques of 3-phase induction motor and also draw Torqueslip characteristics.

 7 M
- 6. a) Derive the EMF equation of an Alternator. And also define pitch factor and distribution factor.

 7 M

b) How can you determine the synchronous reactance of	
alternator by synchronous impedance method.	M

- 7. Write a short notes on following
 - i) stepper motor
 - ii) capacitor motors

14 M

- 8. a) Discuss the principle of operation of PMMC instruments and also derive its torque equation.

 7 M
 - b) Write short notes on solar photo voltaic energy. 7 M